Sabtu, 03 April 2010

Pahlawan-pahlawan Matematika yang Terlupakan


Saat ini ilmu pengetahuan, khususnya matematika, berkiblat ke negeri Barat (Eropa dan Amerika). Kita hampir tidak pernah mendengar ahli matematika yang berasal dari negeri Timur (Arab Muslim, India, Cina). Yang paling populer kita dengar sebagai matematikawan Arab Muslim yang mempunyai kontribusi terhadap perkembangan matematika adalah Al-Khawarizmi, dikenal sebagai bapak Aljabar, memperkenalkan bilangan nol (0), dan penerjemah karya-karya Yunani kuno. 

Apakah benar hanya itu kontribusi negeri-negeri timur (khususnya umat Islam) terhadap perkembangan matematika? 


Kisah angka nol 

Konsep bilangan nol telah berkembang sejak zaman Babilonia danYunani kuno, yang pada saat itu diartikan sebagai ketiadaan dari sesuatu. Konsep bilangan nol dan sifat-sifatnya terus berkembang dari waktu ke waktu. 

Hingga pada abad ke-7, Brahmagupta seorang matematikawan India memperkenalkan beberapa sifat bilangan nol. Sifat-sifatnya adalah suatu bilangan bila dijumlahkan dengan nol adalah tetap, demikian pula sebuah bilangan bila dikalikan dengan nol akan menjadi nol. Tetapi, Brahmagupta menemui kesulitan, dan cenderung ke arah yang salah, ketika berhadapan dengan pembagian oleh bilangan nol. Hal ini terus menjadi topik penelitian pada saat itu, bahkan sampai 200 tahun kemudian. Misalnya tahun 830, Mahavira (India) mempertegas hasil-hasil Brahmagupta, dan bahkan menyatakan bahwa "sebuah bilangan dibagi oleh nol adalah tetap". Tentu saja ini suatu kesalahan fatal. Tetapi, hal ini tetap harus sangat dihargai untuk ukuran saat itu. 

Ide-ide brilian dari matematikawan India selanjutnya dipelajari oleh matematikawan Muslim dan Arab. Hal ini terjadi pada tahap-tahap awal ketika matematikawan Al-Khawarizmi meneliti sistem perhitungan Hindu (India) yang menggambarkan sistem nilai tempat dari bilangan yang melibatkan bilangan 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9. 

Al-Khawarizmi adalah yang pertama kali memperkenalkan penggunaan bilangan nol sebagai nilai tempat dalam basis sepuluh. Sistem ini disebut sebagai sistem bilangan desimal. 


Zaman Kegelapan 

Sebenarnya stagnasi ilmu pengetahuan tidak pernah terjadi, yang terjadi adalah berpindahnya pusat-pusat ilmu pengetahuan. Sejarah mencatat bahwa setelah Yunani runtuh, muncul era baru, yaitu era kejayaan Islam di tanah Arab. Hal ini berakibat bahwa perkembangan kebudayaan dan ilmu pengetahuan berpusat dan didominasi oleh umat Islam-Arab. Yang dimaksud dengan Arab di sini meliputi wilayah Timur Tengah, Turki, Afrika utara, daerah perbatasan Cina, dan sebagian dari Spanyol, sesuai dengan wilayah kekuasaan kekhalifahan Islam pada saat itu. 

Khalifah Harun Al-Rashid, khalifah kelima pada masa dinasti Abassiyah, sangat memerhatikan perkembangan ilmu pengetahuan. Pada masa kekhalifahannya, yang dimulai pada sekitar tahun 786, terjadi proses penerjemahan besar-besaran naskah-naskah matematika (juga ilmu pengetahuan lainnya) bangsa Yunani kuno ke dalam bahasa Arab. Bahkan khalifah berikutnya, yaitu khalifah Al-Ma’mun lebih besar lagi perhatiannya terhadap perkembangan ilmu pengetahuan. Pada masa kekhalifahannya di Bagdad didirikan Dewan Kearifan, yang menjadi pusat penelitian dan penerjemahan naskah Yunani. 

Beasiswa disediakan bagi para penerjemah dan umumnya mereka bukan hanya ahli bahasa, tetapi juga merupakan ilmuwan yang ahli dalam matematika. Misalnya Al-Hajjaj menerjemahkan naskah Elements (berisi kumpulan pengetahuan matematika) yang ditulis Euclid. Beberapa penerjemah lainnya misalnya Al-Kindi, Banu Musa bersaudara, dan Hunayn Ibnu Ishaq. 

Seperti yang banyak dikemukakan ahli sejarah matematika, terutama yang ditulis oleh orang Barat, kontribusi Muslim bagi perkembangan matematika adalah terbatas pada aktivitas penerjemahan naskah Yunani kuno ke dalam bahasa Arab. Banyak ahli sejarah matematika yang tidak menampilkan tentang sumbangan besar Muslim terhadap perkembangan matematika, baik karena sengaja atau ketidaktahuannya. 

Namun tidak sedikit pula ahli sejarah matematika dari Barat yang lebih objektif dalam mengemukakan fakta-fakta yang sebenarnya terjadi. Dalam satu sumber yang ditulis oleh J. J. O’Connor dan E. F. Robertson dikatakan bahwa dunia barat sebenarnya telah banyak berutang pada para ilmuwan/matematikawan Muslim. Lebih lanjut bahwa perkembangan yang sangat pesat dalam matematika pada abad ke-16 hingga abad ke-18 di dunia barat, sebenarnya telah dimulai oleh para matematikawan Muslim berabad-abad sebelumnya. 


Kontribusi matematikawan Muslim 

Salah seorang matematikawan brilian pada masa permulaan adalah Al-Khawarizmi. Selain kontribusinya seperti yang telah dikemukakan, Al-Khawarizmi dikenal pula sebagai pionir dalam bidang aljabar. Penelitian-penelitian Al-Khawarizmi adalah suatu revolusi besar dalam dunia matematika, yang menghubungkan konsep-konsep geometri dari matematika Yunani kuno ke dalam konsep baru. Penelitian-penelitian Al-Khawarizmi menghasilkan sebuah teori gabungan yang memungkinkan bilangan rasional/irasional, besaran-besaran geometri diperlakukan sebagai “objek-objek aljabar”. 

Generasi penerus Al-Khawarizmi, misalnya Al-Mahani (lahir tahun 820), Abu Kamil (lahir tahun 850) memusatkan penelitian pada aplikasi-aplikasi sistematis dari aljabar. Misalnya aplikasi aritmetika ke aljabar dan sebaliknya, aljabar terhadap trigonometri dan sebaliknya, aljabar terhadap teori bilangan, aljabar terhadap geometri dan sebaliknya. Penelitian-penelitian ini mendasari penciptaan aljabar polinom, analisis kombinatorik, analisis numerik, solusi numerik dari persamaan, teori bilangan, dan konstruksi geometri dari persamaan. 

Al-Karaji (lahir tahun 953) diyakini sebagai orang pertama yang secara menyeluruh memisahkan pengaruh operasi geometri dalam aljabar. Al-Karaji mendefinisikan monomial x, x2, x3,…dan 1/x, 1/x2, 1/x3,…dan memberikan aturan-aturan untuk perkalian dari dua suku darinya. Selain itu, ia juga berhasil menemukan teorema binomial untuk pangkat bilangan bulat. Selanjutnya untuk memajukan matematika, ia mendirikan sekolah aljabar. Generasi penerusnya (200 tahun kemudian), yaitu Al-Samawal adalah orang pertama yang membahas topik baru dalam aljabar. Menurutnya bahwa mengoperasikan sesuatu yang tidak diketahui (variabel) adalah sama saja dengan mengoperasikan sesuatu yang diketahui. 

Matematikawan Muslim lainnya adalah Omar Khayyam yang lahir sekitar tahun 1048. Dia berjasa besar melalui penelitiannya, memberikan klasifikasi lengkap dari persamaan pangkat tiga melalui penyelesaian geometri dengan menggunakan konsep pemotongan kerucut. Dia juga memberikan sebuah konjektur (dugaan) tentang deskripsi lengkap dari penyelesaian aljabar dari persamaan-persamaan pangkat tiga.

Matematikawan berikutnya adalah Sharaf al-Din al-Tusi yang lahir tahun 1135. Dia mengikuti Omar Khayyam dalam mengaplikasikan aljabar pada geometri, yang pada akhirnya menjadi permulaan bagi cabang algebraic geometry. 

Di luar bidang aljabar, matematikawan Muslim juga mempunyai andil. Salah seorang dari Banu Musa bersaudara, yaitu Thabit Ibnu Qurra (lahir tahun 836), mempunyai kontribusi yang banyak bagi matematika. Salah satunya adalah dalam teori bilangan, yaitu penemuan pasangan bilangan yang mempunyai sifat unik; dua bilangan yang masing-masingnya adalah jumlah dari pembagi sejati bilangan lainnya dan disebut pasangan bilangan bersahabat (amicable number). Teorema Thabit Ibnu Qura ini kemudian dikembangkan oleh Al-Baghdadi (lahir tahun 980). 

Berikutnya adalah Abu Ali Hasan Ibnu Al-Haytam (lahir tahun 965 di Basrah Irak), yang oleh masyarakat Barat dikenal dengan nama Alhazen. Al-Haytam adalah orang pertama yang mengklasifikasikan semua bilangan sempurna yang genap, yaitu bilangan yang merupakan jumlah dari pembagi-pembagi sejatinya, seperti yang berbentuk 2k-1(2k-1) di mana 2k-1 adalah bilangan prima. Selanjutnya Al-Haytam membuktikan bahwa bila p adalah bilangan prima, 1+(p-1)! habis dibagi oleh p. 

Sayangnya, jauh di kemudian hari, hasil ini dikenal sebagai Teorema Wilson, bukan Teorema Al-Haytam. Teorema ini disebut Teorema Wilson setelah Warring pada tahun 1770 menyatakan bahwa John Wilson telah mengumumkan hasil ini. Selain dalam bidang matematika, Al-Haytam juga dikenal baik dalam dunia fisika, yang mempelajari mekanika pergerakan dari suatu benda. Dia adalah orang pertama yang menyatakan bahwa jika suatu benda bergerak, akan bergerak terus menerus kecuali ada gaya luar yang memengaruhinya. Ini tidak lain adalah hukum gerak pertama, yang umumnya dikenal sebagai hukum Newton pertama. Selain itu, Al-Haytam memberikan andil yang sangat besar bagi perkembangan teori dan praktik optik. Al-Farisi (lahir tahun 1260) memberikan metode pembuktian yang baru untuk teorema Thabit Ibnu Qurra. Dia memperkenalkan ide baru berkenaan faktorisasi dan metode kombinatorik. 

Matematikawan lainnya adalah Al-Kashi (lahir tahun 1380) yang memberikan kontribusi besar bagi perkembangan teori pecahan desimal. Teori ini mempunyai kaitan yang sangat erat dengan teori bilangan riil dan sejarah penemuan bilangan (pi). Selanjutnya ia mengembangkan algoritma penghitungan akar pangkat n. Metode ini beberapa abad kemudian dikembangkan oleh matematikawan barat Ruffini dan Horner. 


Bidang astronomi 

Masalah-masalah astronomi, penentuan waktu, dan masalah geografi merupakan motivasi lain bagi matematikawan Muslim untuk melakukan penelitian. Misalnya saja Ibrahim Ibnu Sinan (lahir sekitar tahun 910-an) dan kakeknya Thabit Ibnu Qurra, mempelajari kurva-kurva yang diperlukan dalam mengonstruksi jam matahari. Abul-Wafa (lahir tahun 940-an) dan Abu Nasr Mansur (lahir tahun 970-an) mengaplikasikan geometri bola terhadap astronomi dan menggunakan rumus-rumus yang melibatkan sinus dan tangen. Kemudian Al-Biruni (lahir tahun 973) menggunakan rumus sinus baik dalam astronomi maupun dalam perhitungan garis bujur dan lintang dari kota-kota. Dalam kasus ini, Al-Biruni melakukan penelitian yang sangat gencar dalam proyeksi dari bola pada bidang. 

Thabit Ibnu Qurra juga mempunyai kontribusi bagi teori dan observasi dalam astronomi. Al-Batanni (lahir tahun 850) membuat observasi yang akurat yang memungkinkannya untuk memperbaiki data-data dari Ptolemy tentang bulan dan matahari. Nadir al-Din al-Tusi (lahir tahun 1201), berdasarkan astronomi teoritisnya dalam pekerjaan Ptolemy, membuat pengembangan yang sangat signifikan dalam model sistem planet. 

Pembuatan tabel-tabel fungsi trigonometri adalah bagian dari pekerjaan para matematikawan Muslim dalam penelitian bidang astronomi, seperti yang dilakukan oleh Ulugh Beg (lahir tahun 1393) dan Al-Kashi. Konstruksi alat-alat astronomi juga tak lepas dari pengaruh para matematikawan Muslim. 

Uraian di atas tidaklah cukup mengulas secara menyeluruh karya-karya matematikawan Muslim. Masih banyak yang belum tercakup, dan belum terungkap. Belum tercakup dan belum terungkapnya semata-mata karena kurangnya sumber yang mengisahkan mereka. Dengan demikian, pantas bagi kita untuk mengatakan bahwa matematikawan Muslim adalah pahlawan-pahlawan matematika yang terlupakan. Atau, memang sengaja dilupakan. Wallahu a’lam.*


Sumber :
Dr. Rizky Rosjandi, Doktor Bidang Kajian Analisis Aljabar, Alumni ITB, Staf Pengajar UPI
Al Jupri, Alumni UPI, Juara III Olimpiade Matematika Internasional di Iran, Staf Pengajar UPI
Pikiran Rakyat 2006
http://matematika.upi.edu/index.php/pahlawan-pahlawan-matematika-yang-terlupakan/, dalam:
http://fkip.ums.ac.id/matematika/cetak.php?id=2626 Januari 2010

Sumber Gambar:
http://library.kptm.edu.my/about2.php

Trend "Mental Aritmatika"

Pembelajaran Mental Aritmatika di Indonesia sekarang telah menjadi sesuatu yang trendi. Orang tua merasa ketinggalan bila anaknya tidak ikut Mental Aritmatika. Di Bogor sendiri tempat-tempat untuk belajar Mental Aritmatika secara privat sangat banyak selang setahun ini, belum lagi yang langsung bekerja sama dengan sekolah-sekolah. Mental Aritmatika selama ini sering diidentikkan dengan Sempoa, padahal sebenarnya sangat berbeda. Untuk itu saya ingin mencoba memaparkan apa itu Mental Aritmatika.

Mental Aritmatika berasal dari kata Mental yang berarti pikiran dan Aritmatika yang berarti berhitung. Jadi secara harfiah Mental Aritmatika adalah Berhitung dengan menggunakan Pikiran/tanpa alat bantu.Adapun sempoa adalah alat bantu sementara, sehingga suatu saat sempoa itu tidak digunakan lagi.

Ada setidaknya 5 hal penting yang akan didapat dari belajar Mental Aritmatika, yaitu:

    1. Keseimbangan otak kiri dan otak kanan
    Selama ini, kita (dalam hal ini anak) dalam berhitung hanya menggunakan otak kiri saja, dengan belajar mental aritmatika anak dirangsang untuk menggunakan otak kanan. kenapa? Karena menghitung dalam Mental Aritmatika, seorang anak membayangkan manik-manik berjalan. Dan otak kananlah yang berfungsi untuk menghayal/membayangkan.

    2. Meningkatkan Kreativitas Anak
    Salah satu pemicu kreativitas anak adalah sering digunakannya otak kanan. Dalam menghitung menggunakan mental, seorang anak harus mampu membayangkan sempoa seperti bagaimana, terus harus mampu menggerakkan manik-manik dalam bayangannya, dan harus mampu membayangkan angka berapa yang muncul di akhir bayangannya. Sebuah cara yang menarik sekaligus menantang. Dengan sering berlatih mental, anak menjadi terbiasa menggunakan otak kanannya. Semakin terbiasa menggunakan daya khayalnya, kreativitas anak semakin berkembang.

    3. Meningkatkan konsentrasi
    Belajar Mental Aritmatika sangat membutuhkan konsentrasi yang baik, karena tanpa konsentrasi yang baik tidak akan didapat hasil yang benar. Jadi, seorang anak akan selalu berkonsentrasi dan tidak ingin konsentarsinya buyar. Semakin sering digunakan, konsentrasi anak akan semakin meningkat.

    4. Menambah Kepercayaan Diri
    Sangat jelas, seorang anak kecil seusia 8 tahun bisa menjumlah puluhan bahkan ratusan dengan cepat, sehingga kalau di beri soal oleh kita akan meminta lagi. Siapa takut.... mungkin katanya.

    5. Mengembangkan diri
    Dalam jangka panjang, mental Aritmatika akan membentuk karakter manusia yang inovatif, suka tantangan, berkreasi, serta tidak mudah putus asa. Mungkin ini yang bisa saya sampaikan. Saran dan kritik sangat saya harapkan.


Sumber :
Mahdi Bachtiar
http://re-searchengines.com/mbachtiar.html
1 Juli 2002

Matematika

Matematika (dari bahasa Yunaniμαθηματικά - mathēmatiká) adalah studi besaranstrukturruang, dan perubahan. Para matematikawan mencari berbagai pola,[2][3] merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang kaku dari aksioma-aksioma dan definisi-definisi yang bersesuaian.[4]


Terdapat perselisihan tentang apakah objek-objek matematika seperti bilangan dan titik hadir secara alami, atau hanyalah buatan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting".[5] Di pihak lain, Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6]


Melalui penggunaan penalaran logika dan abstraksi, matematika berkembang dari pencacahanperhitunganpengukuran, dan pengkajian sistematis terhadap bangun dan pergerakan benda-benda fisika. Matematika praktis telah menjadi kegiatan manusia sejak adanya rekaman tertulisArgumentasi kakupertama muncul di dalam Matematika Yunani, terutama di dalam karya EuklidesElemen. Matematika selalu berkembang, misalnya di Cina pada tahun 300 SM, di India pada tahun 100 M, dan di Arab pada tahun 800 M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.[7]


Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk ilmu alamteknikkedokteran/medis, dan ilmu sosial seperti ekonomi, dan psikologiMatematika terapan, cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti statistika dan teori permainan. Para matematikawan juga bergulat di dalammatematika murni, atau matematika untuk perkembangan matematika itu sendiri, tanpa adanya penerapan di dalam pikiran, meskipun penerapan praktis yang menjadi latar munculnya matematika murni ternyata seringkali ditemukan terkemudian.[8]

Catatan :

  1. ^ Tidak ada perupaan atau penjelasan tentang wujud fisik Euklides yang dibuat selama masa hidupnya yang masih bertahan sebagai kekunoan. Oleh karena itu, penggambaran Euklides di dalam karya seni bergantung pada daya khayal seorang seniman (lihat Euklides).
  2. ^ Lynn Steen (29 April 1988). The Science of Patterns Jurnal Science, 240: 611–616. dan diikhtisarkan di Association for Supervision and Curriculum Development., ascd.org
  3. ^ Keith DevlinMathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe (Scientific American Paperback Library) 1996,ISBN 978-0-7167-5047-5
  4. ^ Jourdain.
  5. ^ Peirce, p.97
  6. ^ a b Einstein, p. 28. Kutipan ini adalah jawaban Einstein terhadap pertanyaan: "betapa mungkin bahwa matematika, di samping yang lain tentunya, menjadi ciptaan pemikiran manusia yang terbebas dari pengalaman, begitu luar biasa bersesuaian dengan objek-objek kenyataan?" Dia juga memperhatikan Keefektifan tak ternalar Matematika di dalam Ilmu Pengetahuan Alam.
  7. ^ Eves
  8. ^ Peterson

Sumber :

http://id.wikipedia.org/wiki/Matematika